醇的化学性质

网上科普有关“醇的化学性质”话题很是火热,小编也是针对醇的化学性质寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。一、醇羟基中氢的反应...

网上科普有关“醇的化学性质”话题很是火热,小编也是针对醇的化学性质寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。

一、醇羟基中氢的反应

醇的反应

在醇分子中,由于氧原子的电负性较强,故与氧原子相连的键有极性:

但碳氧键的可极化性并不强,所以,在水溶液中不能形成碳正离子和羟基负离子。可是由于碳、氧、氢各原子的电负性不同,在反应中有碳氧键和氢氧键断裂的两种可能。可以把醇看成是烷基化的水,即水中的一个氢原子被烷基取代了的产物。因此可以设想它应该有与水相似的性质。例如,水可以离解出氢离子(氢离子浓度为1×10-7 mol?6?1L-1),与金属钠反应,产生氢气和氢氧化钠。醇与金属钠反应也可发生氢氧键的断裂,放出氢气,并生成与氢氧化钠类似的产物,称为醇化钠或醇钠:但该反应比钠与水的反应慢,说明醇是比水弱的酸。碳的电负性比氧弱,碳氧键电子偏向氧,因此烷基是给电子基团,与水相比,羟基中的氢难以电离(氢离子浓度为1×10-9 mol?6?1L-1),即烷氧负离子的碱性比羟基负离子强,所以,醇钠加入水中,全部水解,马上得回醇和氢氧化钠:因为强碱与“酸”相遇,“酸”把质子给予强碱。虽然如此,在工业上制甲醇钠或乙醇钠还是用醇与氢氧化钠反应,然后想法把水除去,使平衡有利于醇钠一方。常用的方法是利用形成共沸混合物,如苯、乙醇、水可形成共沸混合物,将水带走转移平衡。所谓共沸混合物,如几种沸点不同而又完全互溶的液体混合物,由于分子间的作用力,它们在蒸馏过程不能一一分开,而是得到具有最低沸点(比所有组分沸点都低)或最高沸点(比所有组分沸点都高)的馏出物,这些馏出物组成与溶液组成相同,沸点也一直恒定,直到蒸完,冷凝后的液体,称为共沸混合物。如乙醇-苯-水组成三元共沸混合物,其沸点为64.9℃(乙醇18.5%,苯74%,水7.5%),苯-乙醇组成二元共沸混合物,其沸点为68.3℃(乙醇32.4%,苯67.6%)。如乙醇中含有少量的水,由于乙醇-水形成共沸混合物,其沸点为78℃(乙醇95.57%,水4.43%),不能通过蒸馏方法除去,可计算加入比形成乙醇-苯-水三元共沸混合物稍过量的苯,将水除去,过量苯与乙醇形成二元共沸混合物除去,剩下为无水乙醇。醇钠的醇溶液,可通过上述去水方法得到。醇钠及其类似物在有机合成中是一类重要的试剂,并常作为碱使用。根据在气相下研究一系列醇的酸性次序是:(CH3)3CCH2OH>(CH)3COH>(CH3)2CHOH>CH3CH2OH>CH3OH>H2O说明烷基是吸电子基团,但在液相中测定醇的酸性次序正好相反,CH3OH>RCH2OH>R2CHOH>R3COH这解释为醇在气态,分子处于隔离状态,烷基吸电子是反映了分子内在的本质;但在液相中有溶剂化作用,R3CO-由于R3C体积大,溶剂化作用小,而RCH2O-体积小,溶剂化作用大。RCH2O-溶剂化作用大、稳定,因此RCH2OH中的质子易于离解,酸性大;R3CO-溶剂化作用小,不如RCH2O-稳定,因此R3COH中质子不易离解,酸性校一般pKa值是在液相测定的,根据各类醇酸性的大小顺序,因此认为烷基是给电子的。各类醇的其轭酸在水中酸性的强弱,也由它们的共轭酸在水中的稳定性来决定,共轭酸的空间位阻小,与水形成氢键而溶剂化的程度愈大,这个共轭酸就稳定,质子不易离去,酸性就较低。如空间位阻大,溶剂化作用小,质子易离去,酸性强。习题9-6将下列化合物按酸性由大到小排列成序:CH3CH2C≡CH,CH3CH2CH2CH3

习题9-7将下列化合物按碱性由大到小排列成序:

二、碳氧键断裂——羟基被置换

1.与氢卤酸反应氢卤酸与醇反应生成卤代烷,反应中醇羟基被卤离子取代:ROH+HX→RX+H2O

醇羟基不是一个好的离去基团,需要酸的帮助,使羟基质子化后以水的形式易于离去。由于卤离子的亲核能力I->Br ->Cl-,故氢卤酸的反应性HI>HBr>HCl。各种醇的反应性3°>2°>1°。举例如下:CH3(CH2)3OH+HI(57% )→CH3(CH2)3I+H2O 氢碘酸是强酸,一级醇很易与它反应;氢溴酸的酸性较氢碘酸弱,因此需硫酸增强酸性;也可用溴化钠和硫酸代替氢溴酸,这是从一级醇制卤代烷的最常用的方法;浓盐酸的酸性更弱一些,需用氯化锌与其混合使用,称卢卡斯(Lucas)试剂,氯化锌是强的路易斯酸,其作用与质子酸类似。三级醇易反应,只需浓盐酸在室温振荡即可反应,氢溴酸在低温也能与三级醇进行反应。如用氯化氢、溴化氢气体在0℃通过三级醇,反应在几分钟内就可完成,这是制三级卤代烷的常用方法,除非极敏感的化合物,一般可避免发生重排。氢卤酸与大多数一级醇按SN2机制进行反应:

氢卤酸与大多数二级、三级醇按SN1机制进行反应:习题9-8请提出一个用HCl-ZnCl2与一级醇(SN2)、三级醇(SN1)的反应机制。如果按SN1机制反应,就有重排产物产生,如2-戊醇与溴氢酸反应有86%2-溴戊烷与14%3-溴戊烷;异丁醇在氢溴酸与硫酸中加热反应,有80%异丁基溴与20%三级丁基溴,新戊醇由于β位位阻太大,得到的是重排产物2-甲基-2-溴丁烷。邻基参与效应

当有光活性的赤型的β-溴代醇(i)用浓氢溴酸处理,得内消旋的二溴化物(ii),如有光活性的苏型的β-溴代醇(iii)用浓氢溴酸处理,得外消旋体二溴化物(iv)、(v):

当(iii)形成(iv)时,两个手性碳构型均不变,当(iii)形成(v)时,两个手性碳构型均发生转化。这是因为β位的溴参与醇羟基的反应,这种相邻基团在排除离去基团时所作的帮助,称为邻基参与效应。当分子内要形成一个缺电子的碳正离子(除碳外,还可包括氧与氮)时,相邻基团作为一个内部的亲核试剂向这个反应中心的碳进攻,帮助离去基团离去,这样形成了中间体环正离子,然后外部的亲核试剂进攻,形成产物,相邻基团可以通过环正离子迁移到离去基团的碳上,这时两个手性碳的构型均转化,如相邻基团仍回到原来位置,两个手性碳的构型均不变:

邻基参与效应,可以从上述的立体化学表现出来,也可以从反应速率(特别快)表现出来,因为相邻基团的空间位置合适,而且是分子内的反应,因此容易发生反应,比分子间的反应快。习题9-9请说明有光活性的赤-3-溴-2-丁醇和氢溴酸反应的立体化学过程。习题9-10完成下列反应:CH3CH2CH=CHCH2Br混合物,请提出一个合理的解释。习题 9-12预测下列二组醇与氢溴酸进行SN1反应的相对速率:习题9-13 2-环丁基-2-丙醇与HCl反应得1,1-二甲基-2-氯环戊烷;而2-环丙基-2-丙醇与HCl反应得2-环丙基-2-氯丙烷而不是1,1-二甲基-2-氯环丁烷,请提出一个合理的解释。

2.与卤化磷反应:醇与卤化磷反应生成卤代烷

3CH3CH2OH+PBr3→3CH3CH2Br+H3PO3

反应过程如下:

CH3CH2OH+PBr3→CH3CH2OPBr2+HBr醇羟基是一个不好的离去基团,与三溴化磷作用形成CH3CH2OPBr2,Br-进攻烷基的碳原子-OPBr2作为离去基团离去。-OPBr2中还有两个溴原子,可继续与醇发生反应。碘代烷可由三碘化磷与醇制备,但通常三碘化磷是用红磷与碘代替,将醇、红磷和碘放在一起加热,先生成三碘化磷,再与醇进行反应:

 氯代烷常用五氯化磷与醇反应制备:

CH3CH2OH+PCl5→CH3CH2Cl+HCl+POCl3

上述方法中,最常用的是三溴化磷与一级醇、β位有支链的一级醇、二级醇生成相应溴代烷,在用二级醇及有些易发生重排反应的一级醇时温度需低于0℃,以避免重排。红磷与碘常用于一级醇制相应碘代烷。习题9-14请写明下列醇转化为相应卤代烷的试剂及反应条件:

3.与亚硫酰氯反应若用亚硫酰氯和醇反应,可直接得到氯代烷,同时生成二氧化硫和氯化氢两种气体,在反应过程中这些气体都离开了反应体系,这有利于反应向生成产物的方向进行,该反应不仅速率快,反应条件温和,产率高,而且不生成其它副产物。一般用过量的亚硫酰氯并保持微沸,是一个很好的制氯代烷的方法:亚硫酰氯bp79℃反应机制如下:

从上式中可以看出反应过程中先生成氯代亚硫酸酯,然后分解为紧密离子对,Cl-作为离去基因(-OSOCl)中的一部分,向碳正离子正面进攻,即“内返”,得到构型保持的产物氯代烷。在低温时,可以分离出该中间产物氯代亚硫酸酯,经加热分解成氯代烷和二氧化硫。这说明上述反应机制与实际相符,而且取代犹如在分子内进行的,所以叫它分子内取代,以SNi表示(SubstitutionNucleophilic internal),不过这种取代较少。经过反应,原羟基所在的碳原子仍然保持着原来的构型,只是氯原子占据了羟基所在的位置。但在醇和亚硫酰氯的混合液中加入弱亲核试剂吡啶,即会发生构型的转化,因为中间产物氯代亚硫酸酯以及反应中生成的氯化氢均可和吡啶反应分别生成下列产物:

上述二产物都含有“自由”的氯负离子,它可从碳氧键的背面向碳原子进攻,从而使该碳原子的构型发生转化:

三级胺(R3N)和吡啶一样可对此反应起催化作用,因为有利于氯离子的形成:

亚硫酰氯和吡啶,常用于一级醇,β位有侧链的一级醇、二级醇制相应的氯代烷,此试剂有很多优点,因此是常用的方法。亚硫酰溴因不稳定而很难得,故不用它制溴代烷。习题9-15完成下列反应,写出主要产物:

三、氢氧键断裂与酯的形式

醇与含氧无机酸或有机酸及它们的酰氯和酸酐反应,都生成酯,酯相当于醇和酸的两种分子间失去一分子水,并相互结合成为一个分子,如下式所示:在上列反应过程中,是醇分子作为亲核试剂进攻酸或其衍生物的带正电荷部分,而后醇分子的氢氧键断裂,例如:

对甲苯磺酰氯(TsCl)是由对甲苯磺酸(TsOH)与五氯化磷或亚硫酰氯作用制得:

醇羟基必须在酸或路易斯酸催化下才可进行取代反应,而苯磺酸酯中酸根部分是很好的离去基团,因此这类酯比醇容易进行亲核取代反应,如:

这样将一级或二级醇通过形成磺酸酯再转为卤代烷,纯度很好。上述反应醇羟基所连碳原子为手性碳原子,磺化一步构型不变,与卤离子反应一步构型转化,二步最终得到构型转化的产物。1-丁醇-1-d中由于H与D的差别很小,所以光活性的差别也很小,只有[α]D=0.5°。习题9-16由苯、甲苯以及必要的有机及无机试剂合成:的甲醇溶液)制成对甲苯磺酸二级丁酯,然后用碱水解,得(S)-(+)-2-化学过程,并加以解释。

四、醇的氧化一级醇及二级醇的醇羟基相连的碳原子上有氢,可以被氧化成醛、酮或酸;三级醇的醇羟基相连的碳原子上没有氢,不易被氧化,如在酸性条件下,易脱水成烯,然后碳碳键氧化断裂,形成小分子化合物。1.用高锰酸钾或二氧化锰氧化醇不为冷、稀、中性的高锰酸钾的水溶液所氧化,一级醇、二级醇在比较强烈的条件下(如加热)可被氧化。一级醇生成羧酸钾盐,溶于水,并有二氧化锰沉淀析出,中和后可得羧酸:

二级醇可氧化为酮:

在二级醇用高锰酸钾氧化为酮时,易进一步氧化使碳碳键断裂,故很少用于合成酮。三级醇在中性、碱性条件下不易为高锰酸钾氧化,在酸性条件下,则能脱水成烯,再发生碳碳键断裂,生成小分子化合物,如:

高锰酸钾与硫酸锰在碱性条件下可制得二氧化锰,新制的二氧化锰可将β碳上为不饱和键的一级醇、二级醇氧化为相应的醛和酮,不饱和键可不受影响:

2KMnO4+3MnSO4+4NaOH→5MnO2↓+K2SO4+2Na2SO4+2H2O

CH2=CHCH2OH→CH2=CHCHO

丙烯醛

HOCH2CH2CH=CHCH2OH→HOCH2CH2CH=CHCHO

2.用铬酸氧化

可作为氧化剂的铬酸形式有:Na2Cr2O7与40%~50%硫酸混合液、CrO3的冰醋酸溶液、CrO3与吡啶的络合物等一级醇常用Na2Cr2O7与40%~50%硫酸混合液氧化,先得醛,醛进一步氧化为酸,如:

如控制合适的氧化条件,在氧化成醛后立即从反应体系中蒸出,可避免进一步被氧化为酸,反应需在低于醇的沸点,高于醛的沸点温度下进行,如:

将丙醇滴加到温度为~75℃的Na2Cr2O7,H2SO4,H2O的溶液中,一旦生成丙醛,就被蒸馏出来。这种反应产率不高,因为总有一部分醛氧化为酸。醛的沸点低于100℃才能用此法,因此此法用途是非常有限的。二级醇常用上述几种铬酸氧化剂氧化,酮在此条件下比较稳定。因此是比较有用的方法。

用铬酐(CrO3)与吡啶形成的铬酐-双吡啶络合物是吸潮性红色结晶,称沙瑞特(Sarrett,L.H.)试剂,可使一级醇氧化为醛,二级醇氧化为酮,产率很高,因为吡啶是碱性的,对在酸中不稳定的醇是一种很好的氧化剂,反应一般在二氯甲烷中于25℃左右进行。如:

分子中有双键、叁键,氧化时不受影响。不饱和的二级醇也可用琼斯(Jones)试剂氧化成相应的酮而双键不受影响,该试剂是把铬酐溶于稀硫酸中,然后滴加到要被氧化的醇的丙酮溶液中,反应在15~20℃进行,可得较高产率的酮,如:

醇与铬酸的反应机制,认为如下所示:

上述的水作为碱。也可以不是外来的碱,而是通过环状机制,把一个H+传给氧的:

其余的醇也被氧化:R2CHOH+Cr(IV)→R2COH+Cr(III)

R2COH+Cr(VI)→R2C=O+Cr(V)

最终将 Cr(VI)还原为 Cr(III)。如用过量铬酸并反应条件强烈,双键也被氧化成酮或酸。3.用硝酸氧化一级醇能在稀硝酸中氧化为酸。二级醇、三级醇需在较浓的硝酸中氧化,同时碳碳键断裂,成为小分子的酸。环醇氧化,碳碳键断裂成为二元酸:

4.欧芬脑尔(Oppenauer,R.V)氧化法另一种有选择性的氧化醇的方法叫做欧芬脑尔氧化法,即在碱如三级丁醇铝或异丙醇铝的存在下,二级醇和丙酮(或甲乙酮、环己酮)一起反应(有时需加入苯或甲苯做溶剂),醇把两个氢原子转移给丙酮,醇变成酮,丙酮被还原成异丙醇。该反应的特点是,只在醇和酮之间发生氢原子的转移,而不涉及分子的其它部分。所以在分子中含有碳碳双键或其它对酸不稳定的基团时,利用此法较为适宜。因此该法也是由一个不饱和二级醇制备不饱和酮的有效方法。

醇铝可用下法制备:

反应举例如下:

该反应是通过一个环状中间体进行的。

 这是一个可逆反应,故也可由酮制醇(参看10.16,4)。为使上一反应向生成酮的方向进行,需加入大量的丙酮。使(i)尽可能与丙酮络合,将丙酮还原为异丙醇;而其逆反应则需加大量异丙醇,同时把产生的丙酮从反应体系中移走。使用上述氧化法一级醇虽也可氧化成相应的醛,但效果并不太好,因在碱存在下,生成的醛常易进行羟醛缩合反应。5.用费兹纳-莫发特试剂氧化一级醇在近来发现的费兹纳(Pfitzner,K.E.)及莫发特(Moffatt,J.G.)试剂的作用下,可以得到产率非常高的醛。这个试剂是二甲亚砜和二环己基碳二亚胺,二环己基碳二亚胺英文名叫dicyclohexyl carbodiimide,简称为DC是二

取代脲的失水产物:

这是一个非常重要的失水剂。如对硝基苯甲醇,用这个试剂在磷酸作用下,得到92%产率的对硝基苯甲醛:

反应过程如下:

在这个反应中,二环己基碳二亚胺接受一分子水,变为脲的衍生物,而二甲亚砜变为二甲硫醚。这个氧化剂也可用于氧化二级醇。在进行氧化反应时,必须注意许多有机物与强氧化剂接触时,会发生强烈的爆炸,因此在使用高锰酸钾、高氯酸以及类似氧化剂进行反应时,一定要在溶剂中进行,因为溶剂可使放出的大量热消散,减缓反应速率。

五、醇的脱氢

一级醇、二级醇可以在脱氢试剂的作用下,失去氢形成羰基化合物,醇的脱氢一般用于工业生产,常用铜或铜铬氧化物等作脱氢剂,在300℃下使醇蒸气通过催化剂即可生成醛或酮。此外Pd等也可作脱氢试剂

醇除以上所讨论的各种反应外,也像水一样,和干燥剂如氯化钙可形成结晶醇。例如甲醇和乙醇与氯化钙作用,分别形成CaCl2?6?14CH3OH和CaCl2?6?16C2H5OH。因此乙醇溶液不能用氯化钙干燥。

</B>

折叠醇与含氧无机酸的反应

醇与含氧无机酸反应失去一分子水,生成无机酸酯。

醇与硝酸的反应过程如下:醇分子作为亲核试剂进攻酸或其衍生物的带正电荷部分,氮氧双键打开,而后醇分子的氢氧键断裂,硝酸部分失去一分子水重新形成氮氧双键。

该类反应主要用于无机酸一级醇酯的制备。无机酸三级醇酯的制备不宜用此法,因为三级醇与无机酸反应时易发生消除反应。

醇与含氧无机酸的酰氯和酸酐反应,也能生成无机酸酯。

含氧无机酸酯有许多用途。乙二醇二硝酸酯和甘油三硝酸酯(俗称硝化甘油)都是烈性炸药。硝化甘油还能用于血管舒张、治疗心绞痛和胆绞痛。科学家发现:硝化甘油能治疗心脏病的原因是它能释放出信使分子"NO",并阐明了"NO"在生命活动中的作用机理。为此,他们荣获了1998年诺贝尔生理学和医学奖。

生命体的核苷酸中有磷酸酯,例如甘油磷酸酯与钙离子的反应可用来控制体内钙离子的浓度,如果这个反应失调,会导致佝偻病。

折叠醇羟基的取代反应

醇中,碳氧键是极性共价键,由于氧的电负性大于碳,所以其共用电子对偏向于氧,当亲核试剂进攻正性碳时,碳氧键异裂,羟基被亲核试剂取代。其中最重要的一个亲核取代反应是羟基被卤原子取代。常采用的方法如下:

1.与氢卤酸的反应

(1)一般情况

氢卤酸与醇反应生成卤代烷,反应中醇羟基被卤原子取代。

ROH+HX-->RX+H20

醇羟基不是一个好的离去基团,需要酸的帮助,使羟基质子化后以水的形式离去。各种醇的反应性为3°>2°>1°,三级醇易反应,只需浓盐酸在室温振荡即可反应,氢溴酸在低温也能与三级醇进行反应。如用氯化氢、溴化氢气体在0℃通过三级醇,反应在几分钟内就可完成,这是制三级卤代烷的常用方法。

在氢卤酸中,氢碘酸酸性最强,氢溴酸其次,浓盐酸相对最弱,而卤离子的亲核能力又是I->Br->Cl-,故氢卤酸的反应性为HI> HBr>HCl。若用一级醇分别与这三种氢卤酸反应,氢碘酸可直接反应,氢溴酸需用硫酸来增强酸性,而浓盐酸需与无水氯化锌混合使用,才能发生反应。氯化锌是强的路易斯酸,在反应中的作用与质子酸类似。

用Lucas试剂鉴别一级醇、二级醇、三级醇

浓盐酸和无水氯化锌的混合物称为Lucas试剂。可用来鉴别六碳和六碳以下的一级、二级、三级醇别加入盛有Lucas试剂的试管中,经振荡后可发现,三级醇立刻反应,生成油状氯代烷,它不溶于酸中,溶液呈混浊后分两层,反应放热;二级醇2~5min反应,放热小明显,溶液分两层;一级醇经室温放置1h仍无反应,必须加热才能反应。

在使用Lucas试剂时须注意,有些一级醇如烯丙型醇(allylicalcohol)及苯甲型醇(benzylicalcohol),也可以很快地发生反应,这是因为p-π共轭,很容易形成碳正离子进行SN1反应。

各类醇与Lucas试剂的反应速率为

烯丙型醇,苯甲型醇,三级醇>;二级醇>;一级醇

氢卤酸与大多数一级醇按SN2机理进行反应。

氢卤酸与大多数二级、三级醇和空阻特别大的一级酵按SN1机理进行反应。

如果按SN机理反应,就有重排产物产生,如2-戊醇与氢溴酸反应有86%2-溴戊烷与14%3-溴戊烷;异丁醇在氢溴酸与硫酸中加热反应,有80%异丁基溴与20%三级丁基溴,新戊醇由于β位位阻太大,得到的是重排产物2-甲基-2-溴丁烷。三级醇与氢卤酸的反应一般不会发生重排,但三级醇易发生消除反应,所以取代反应需在低温时进行。

2.与卤化磷反应

醇与卤化磷反应生成卤代烷。

醇羟基是一个不好的离去基团,与三溴化磷作用形成CH3CH2OPBr2,Br进攻烷基的碳原子,-OPBr2作为离去基团离去。- OPBr2中还有两个溴原子,可继续与醇发生反应。

碘代烷可由三碘化磷与醇制备,但通常三碘化磷是用红磷与碘代替,将醇、红磷和碘放在一起加热,先生成三碘化磷,再与醇进行反应。

氯代烷常用五氯化磷与醇反应制备。

上述方法中,最常用的是三溴化磷与一级醇、β位有支链的一级醇、二级醇生成相应溴代烷,在用二级醇及有些易发生重排反应的一级醇时温度须低于0℃,以避免重排。红磷与碘常用于一级醇制相应碘代烷。

3.与亚硫酰氯反应

若用亚硫酰氯和醇反应,可直接得到氯代烷,同时生成二氧化硫和氯化氢两种气体,在反应过程中这些气体都离开了反应体系,这有利于反应向生成产物的方向进行,该反应不仅速率快,反应条件温和,产率高,而且不生成其它副产物。一般用过量的亚硫酰氯并保持微沸,是一个很好的制氧代烷的方法。

4.经醇与磺酰氯反应为中间阶段来制备卤代烃

醇羟基必须在质子酸或路易斯酸催化下才可进行取代反应,而苯磺酸酯中酸根部分是很好的离去基团,因此这类酯比醇容易进行亲核取代反应。

这样将一级或二级醇通过与苯磺酰氯反应形成磺酸酯,再转为卤代烷,纯度很好。磺酰氯可以由相应的磺酸与五氯化磷反应来制备。

折叠醇的氧化

一级醇及二级醇与醇羟基相连的碳原子上有氢,可以被氧化成醛、酮或酸;三级醇与醇羟基相连的碳原子上没有氢,不易被氧化,如在酸性条件下,易脱水成烯,然后碳碳键氧化断裂,形成小分子化合物。

1.用高锰酸钾或二氧化锰氧化

醇不为冷、稀、中性的高锰酸钾的水溶液所氧化,一级醇、二级醇在比较强烈的条件下(如加热)可被氧化。一级醇生成羧酸钾盐,溶于水,并有二氧化锰沉淀析出,中和后可得羧酸。

二级醇可氧化为酮。但由于二级醇用高锰酸钾氧化为酮时,易进一步氧化使碳碳键断裂,故很少用于合成酮。

三级醇在中性、碱性条件下不易为高锰酸钾氧化,在酸性条件下,则能脱水成烯,再发生碳碳键断裂,生成小分子化合物。

高锰酸钾与硫酸锰在碱性条件下可制得二氧化锰,新制的二氧化锰可将β碳上为不饱和键的一级醇、二级醇氧化为相应的醛和酮,不饱和键可不受影响。

2.用铬酸氧化

铬酸可作为氧化剂的形式有:Na2Cr2O7与40%~50%硫酸混合液、CrO3的冰醋酸溶液、CrO3与吡啶的络合物等。

一级醇常用NaCr2O7与40%~50%硫酸混合液氧化,先得醛,醛进一步氧化为酸。如控制合适的氧化条件,在氧化成醛后立即将其从反应体系中蒸出,可避免醛进一步被氧化为酸,反应需在低于醇的沸点,高于醛的沸点温度下进行将丙醇滴加到温度为~75℃的NaCr2O7,H2SO4,H2O的溶液中,一旦生成丙醛,就被蒸馏出来。这种反应产率不高,因为总有一部分醛氧化为酸。醛的沸点低于100℃才能用此法,因此它的用途是非常有限的。

二级醇常用上述几种铬酸氧化剂氧化,酮在此条件下比较稳定。因此是比较有用的方法。

用铬酐(CrO3)与吡啶反应形成的铬酐一双吡啶络合物是吸潮性红色结晶,称Sarrett(沙瑞特)试剂,可使一级醇氧化为醛,二级醇氧化为酮,产率很高,因为吡啶是碱性的,对在酸中不稳定的醇是一种很好的氧化剂,反应一般在二氯甲烷中于25℃左右进行。分子中如有双键、三键,氧化时不受影响。

二级醇还可以被Jones(琼斯)试剂氧化成相应的酮,若反应物是不饱和的二级醇,用Jones试剂氧化时生成相应的酮而双键不受影响,该试剂是把铬酐溶于稀硫酸中,然后滴加到要被氧化的醇的丙酮溶液中,反应在15~20℃进行,可得较高产率的酮。

如用过量铬酸并反应条件强烈,双键也被氧化成酮或酸。

用铬酐的硫酸水溶液鉴别一级醇、二级醇

一级醇、二级醇可使清澈的铬酐的硫酸水溶液由橙色变为不透明的蓝绿色。三级醇无此反应。烯烃、炔烃也无此反应。上述反应的原因是一级醇与二级醇起了氧化作用。

3.用硝酸氧化

一级醇能在稀硝酸中氧化为酸。二级醇、三级醇需在较浓的硝酸中氧化,同时碳碳键断裂,成为小分子的酸。环醇氧化,碳碳键断裂成为二元酸。

4.Oppenauer氧化法

另一种有选择性的氧化醇的方法叫做Oppenauer(欧芬脑尔)氧化法(oxidation methods),即在碱如三级丁醇铝或异丙醇铝的存在下,二级醇和丙酮(或甲乙酮、环己酮)一起反应(有时需加入苯或甲苯做溶剂),醇把两个氢原子转移给丙酮,醇变成酮,丙酮被还原成异丙醇。该反应的特点是,只在醇和酮之间发生氢原子的转移,而不涉及分子的其它部分。所以在分子中含有碳碳双键或其它对酸不稳定的基团时,利用此法较为适宜。因此该法也是由一个不饱和二级醇制备不饱和酮的有效方法。 5.用Pfitzner-Moffatt试剂氧化

一级醇在Pfitzner(费兹纳)- Moffatt(莫发特)试剂的作用下,可以得到产率非常高的醛。这个试剂是由二甲亚砜和二环己基碳二亚胺组成。二环己基碳二亚胺英文名叫dicyclohexylcarbodiimide,简称为DCC,是二取代脲的失水产物。这是一个非常重要的失水剂(dehydrating agent)。如对硝基苯甲醇在磷酸和这个试剂的作用下,得到92%产率的对硝基苯甲醛。

在这个反应中,环己基碳二亚胺接受一分子水,变为脲的衍生物,而二甲亚砜变为二甲硫醚。这个氧化剂也可用于氧化二级醇。

在进行氧化反应时必须注意:许多有机物与强氧化剂接触会发生强烈的爆炸,冈此在使用高锰酸钾、高氯酸以及类似氧化剂时,一定要在溶剂中进行反应,因为溶剂可使放出的大量热消散,减缓反应速率。

折叠醇的脱氢

一级醇、二级醇可以在脱氢试剂(dehydrogenating agent)的作用下,失去氢形成羰基化合物,醇的脱氢一般用于工业生产,常用铜或铜铬氧化物等作脱氢剂,在300℃下使醇蒸气通过催化剂即可生成醛或酮。此外Pd等也可作脱氢试剂。

3.4醇、酚和醚的卤素置换反应

3.4.1醇的卤素置换反应

醇的卤素置换反应是获得卤化物的重要方法,常用的卤化剂是氢卤酸和亚硫酰卤、磷酰卤及卤化磷等。实际上,不论是哪种方法,不外乎是先将羟基变成更好的离去基团,然后用卤素进行亲核取代。

(1)氢卤酸(卤化氢)作卤化剂

醇与氢卤酸的反应一般为亲核取代反应。能形成稳定碳正离子的底物可按SN1机理进行,其它反应通常为SN2机理。

醇的活性顺序为叔醇>仲醇>伯醇(SN1);氢卤酸(卤化氢)的活性顺序为HI>HBr>HCl>HF,低活性的卤化剂可加入Lewis酸催化。

叔胺也可催化这类反应。see RU 2051889, Process for Preparing 2-Ethylhexyl Chloride-1(1993).

(2)亚硫酰卤(卤化亚砜)作卤化剂

亚硫酰卤与醇反应生成卤代烷和二氧化硫与卤化氢,易分离,在醇的卤化中应用较广,如头孢哌酮钠中间体氧哌嗪甲酰氯的合成。

就氯化亚砜氯化而言,在不同的反应条件下,其反应机理不尽相同。

DMF和HMPA可催化醇与卤化亚砜的反应。DMF可与SOCl2反应生成氯代烯铵盐:

该烯铵盐可作为氯化剂实现醇的氯代。

类似地,HMPA与SOCl2的反应产物也是很好的氯化剂,其机理亦与DMF相同。

反应示例:HMPA催化的某伯醇的氯代。

有机碱,如吡啶,可以和卤化氢成盐而提高卤离子浓度,也能提高此类反应速度,该法尤其适用于对酸敏感的底物。

无取代或供电子基取代的芳醛与溴化亚砜共热,可得二溴苄。反应物中存在的微量的溴化氢对醛羰基的加成是反应的第一步。

在无水DMF中,氯化亚砜可将芳醛转化为相应的二氯苄。

(3)卤化磷作卤化剂

三卤化磷和五卤化磷也是转化醇为卤代烷的常用试剂。其反应活性较氢卤酸大,又较少发生重排反应。常用的卤化磷是三氯化磷和三溴化磷,后者可由溴素与磷原位制备。

三卤化磷与醇反应可生成亚磷酸单、双和三酯,之后,卤离子对上述磷酸酯发生取代,置换掉氧亚磷酰片断,生成卤代烷。

与卤化亚砜类似,卤化磷与DMF反应也能生成卤代烯铵盐,后者是高活性的卤化剂,与醇反应可生成构型翻转的卤代烷。

(4)有机膦卤化合物作卤化剂

三苯基膦卤化物,如Ph3PX2、Ph3PCX3X和(PhO)3POX2等,在对醇进行卤化时,反应活性高,条件温和。这些卤化剂可由三苯基膦或亚磷酸三苯酯与卤素或卤代烷原位合成。

以下为其可能的反应机理,其中卤素取代过程为SN2反应。

上述反应可在DMF或HMPA中进行,可使光学活性的醇转化为构型翻转的卤代烷。也用于对酸敏感的醇的卤化。

三苯基膦与N-卤代酰胺(NXS)的反应产物也以类似机理发生类似反应,适用于对酸不稳定的醇或甾醇的卤化。

(5)其它卤化剂

卤硅烷试剂可在温和条件下将醇转化为卤代烷。

NXS与二甲硫醚反应产物卤代硫鎓盐,对烯丙位和苄位羟基的取代有高度的选择性,反应条件温和,不影响其它伯、仲羟基。

甲磺酸/碘化钠可在温和条件下碘代烯丙位或苄位的羟基,这种选择性可能与碳正离子的稳定性有关。

四甲基alpha-卤代烯胺可在温和条件下将伯、仲羟基以及烯丙位、炔丙位和苄位的羟基转化为卤代烃。其大位阻的类似物则可高选择性地卤代伯、烯丙位和苄位羟基。

其反应机理与DMF催化卤化亚砜卤化反应过程相同。

2-氯-3-乙基-苯并恶唑四氟硼酸盐也以类似的反应机理成为温和的卤化剂。如前列腺素中间体的合成。

3.4.2酚的卤素置换反应

酚羟基活性低,其卤置换反应必须使用五卤化磷或五卤化磷/氧卤化磷混合物,在较剧烈的条件下进行。对于某些底物也可单独使用氧卤化磷。

三苯基膦卤化物也是转化酚为芳卤化合物的常用试剂。

又例如:

(R)-(+)- and (S)-(-)-2,2'-Bis(diphenyl phosphino)-1,1'-Binaphthyl(BINAP), Organic Syntheses, Coll. Vol. 8, P.57; Vol. 67, P.20.

羟基取代卤素形成C-O-P结构是反应的第一步,继之以卤素对C上O的取代(加成消除)。

3.4.3醚的卤素置换反应

醚可与氢卤酸等物质反应生成卤化物和羟基化合物(醇或酚),如四氢呋喃与甲醇和氯化亚砜反应生成4-氯丁甲醚。

醚氧原子的质子化一般是反应的第一步,然后是亲核取代反应。

醚键断开后,哪个片断生成醇,哪个片断生成卤化物,取决于其吸电子能力。

BF3、BBr3等Lewis酸也可以类似机理裂解醚键。

see US 4595765, 1986.

三甲基硅卤化物也是温和的卤化剂。

以三甲基氯硅烷/碘化钠作碘化剂,不生成碘化氢,可高收率地获得碘化物。

3.5羧酸的卤素置换反应

常见的羧酸卤素置换反应是羧羟基的置换和脱羧卤置换。

3.5.1羧羟基的卤素置换反应:酰卤的制备

羧酸可在一定条件下与亚硫酰卤及卤化磷等卤化剂反应,生成混酸酐-酰卤。

(1)卤化亚砜作卤化剂

卤化亚砜是较为常用的羧酸卤化剂,其优点在于卤化后生成卤化氢和二氧化硫,其本身沸点低、易除去,所以反应后易分离。

此反应对底物中的双键、羰基或酯基等影响较小。可在过量的卤化亚砜中进行,也可以苯或石油醚等作溶剂。

氯化亚砜是由羧酸合成酰氯最常用的氯化剂,它也可与酸酐反应生成酰卤。

反应机理:

以上反应可被有机碱(吡啶或DMAP等)和Lewis酸(ZnCl2等)催化。

(2)卤化磷作卤化剂

在卤化磷中,卤化剂的活性顺序为五卤化磷>三卤化磷>三卤氧磷。五氯化磷常用于活性较小的羧酸,尤其是具吸电子基的芳酸或芳香多元酸的酰氯化。

产物应与三氯氧磷有一定的沸点差,以利分离。

三卤化磷可用于脂肪酸的酰卤化。

三氯氧磷可与羧酸盐反应生成酰氯。

反应机理,以三卤化磷为例。

上述酰卤化反应中,羧酸的活性顺序为脂肪酸>芳香酸(供电子基取代的芳酸>未取代的芳酸>吸电子基取代的芳酸),这说明羧羟基对硫(磷)的亲核进攻是控制步骤。

(3)草酰氯作氯化剂

草酰氯可在烃类溶剂中以温和条件将羧酸转化为酰氯,此法可避免氯化磷等其它氯化剂对底物中敏感基团的影响。

反应机理:

可见,上例中转化羧酸为钠盐可以避免氯化氢的生成,从而减少对敏感基团的影响。

(4)其它卤化剂

氰脲酰氯(三聚氯氰)可在三乙胺存在下,以温和条件将羧酸转化为酰氯。

与醇的卤化类似,三苯基膦卤化物和四甲基alpha-卤代烯胺也可用于由羧酸制酰卤的反应。

3.5.2羧酸的脱羧卤素置换反应

羧酸的银盐与溴或碘反应,生成比底物少一个碳的卤代烃,称为Hunsdiecker反应。

对于2-18个碳的饱和脂肪酸而言,该反应一般可获得较好结果,同时,该反应也可用于芳香酸的脱羧卤化。

上述反应中若有水存在则影响收率,甚至导致会失败。用汞盐代替不稳定的无水银盐,在光照条件下,其收率可高于银盐法。实际实施中可用羧酸、过量氧化汞与卤素直接反应,操作简单。

与Hunsdiecker反应相似,羧酸与金属卤化物(LiCl)、四乙酸铅在苯或乙醚等溶剂中反应,生成脱羧氯化产物,称为Kochi改良法。

此反应过程中不发生重排,尤其适用于仲、叔氯代烃及beta-季碳氯代烃的合成。

以下过程可能为其反应机理。

将羧酸与碘、四乙酸铅在四氯化碳中进行光照,可发生脱羧碘化反应。称为Barton改良法。伯或仲脂肪酸的反应一般较好,苯甲酸的反应收率一般在60%左右。

3.6其它官能团的卤素置换反应

3.6.1卤化物的卤素交换反应

伯卤化物与无机卤化物之间的卤素交换反应称为Finkelstein反应。

以上脂肪族卤化物的反应应为SN2机理。

类似的反应也可发生在芳香族卤化物上。

其反应机理可能为加成-消除。溶剂可以使用DMF、丙酮或二硫化碳等非质子极性溶剂。

Lewis酸可以通过帮助卤素离去而活化卤代烃,所以,加入Lewis酸往往可以促进卤素交换反应。

氟化可用氟化钠、氟化钾、氟化银和氟化剃等,其中氟化钾活性较高、价廉,常用。

氟化锑可选择性地与同一碳原子上的多个卤素反应,而不与单个卤素反应。此特性可用来合成三氟甲基化合物。

18-冠-6醚可显著提高用氟化钾进行氟交换的收率。

3.6.2磺酸酯的卤素置换反应

将醇羟基转化为活性较高的磺酸酯,可在温和条件下卤代。此法即可避免醇的卤化的副反应,也比卤素交换有效。常用的卤化剂有卤化钠、卤化钾、卤化镁和卤化锂等。

以上饱和碳上的磺酸酯-卤素置换反应应为SN2机理。以下在不饱和碳上的磺酸酯-卤素置换反应应为加成消除-机理。

3.6.3芳香重氮盐的卤素置换反应

芳香族重氮化合物的卤素置换反应往往可以将卤素引入到直接卤化难以引入的位置。反应是以卤化亚铜为催化剂,相应的氢卤酸为卤化剂进行,称为Sandmeyer反应。

以上反应被认为是自由基机理。

芳香重氮盐的碘置换反应中可不加铜催化剂,只需将重氮盐与碘素直接加热即可。

关于“醇的化学性质”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!

本文来自作者[怀卉]投稿,不代表新盛号立场,如若转载,请注明出处:https://liuxinsheng.com/cshi/202503-12746.html

(287)

文章推荐

  • 微信玩牛牛房卡,请记住收藏这10个渠道

    在当今这个数字化时代,智能手机已成为人们生活中不可或缺的一部分,各类应用程序更是如雨后春笋般涌现,其中不乏一些休闲娱乐的游戏应用。而“微信玩牛牛房卡”这一概念,便是在这一背景下悄然兴起的,它融合了社交与游戏的元素,为许多用户提供了茶余饭后的消遣方式。“微信玩牛牛”这款游戏,以其独特的玩法和较高的

    2025年01月17日
    55
  • 九哥大厅房卡哪家便宜~获取房卡教程

    在探讨“九哥大厅房卡哪家便宜”这一话题时,我们不可避免地会涉及到网络游戏社区中的虚拟消费现象。随着在线娱乐的蓬勃发展,各类游戏平台与大厅如雨后春笋般涌现,为玩家提供了丰富多样的休闲娱乐选择。而房卡,作为连接玩家、促进游戏对局的重要媒介,其价格与获取渠道自然成为了众多玩家关注的焦点。九哥大厅作为众

    2025年01月19日
    69
  • 金龙大厅房卡代理批发~房卡获取方法

    在互联网迅速发展的今天,各种线上娱乐平台层出不穷,为人们的生活带来了诸多便捷与乐趣。其中,“金龙大厅”作为众多平台中的一员,凭借其独特的游戏设计与丰富的娱乐体验,吸引了大量玩家的关注与喜爱。在这样的背景下,“金龙大厅房卡代理批发”这一业务模式也应运而生,成为不少创业者或寻求额外收入来源人士的关注焦点

    2025年01月20日
    50
  • 怎么查火车票订票信息

    网上科普有关“怎么查火车票订票信息”话题很是火热,小编也是针对怎么查火车票订票信息寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。查询个人订票信息方法如下:工具:手机、12306软件、网络。1、首先需要我们先在手机上的打开铁路12306软件。2、进入铁路123

    2025年02月04日
    318
  • 离广州东火车站最近的汽车站是哪个汽车站?

    网上科普有关“离广州东火车站最近的汽车站是哪个汽车站?”话题很是火热,小编也是针对离广州东火车站最近的汽车站是哪个汽车站?寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。广州东火车站最近的的汽车客运站是"东汽车客运站"。在广州东站过去的方法:1、如果你在广州东

    2025年02月12日
    267
  • 高仿巴宝莉单肩包哪个好看?收藏这10个渠道!

    在时尚界,巴宝莉(Burberry)以其经典的设计、卓越的品质以及独特的品牌文化,赢得了全球消费者的喜爱。然而,对于许多追求时尚又预算有限的消费者来说,高仿巴宝莉单肩包成为了一个既满足审美需求又相对经济的选择。面对琳琅满目的高仿巴宝莉单肩包,如何挑选出一款既符合个人品味又具备巴宝莉风格的包款,成为了

    2025年02月17日
    29
  • 高仿prada腋下包真假鉴定图解?收藏这10个渠道!

    在时尚界,Prada作为顶级奢侈品牌之一,其设计独特、品质卓越的腋下包深受消费者喜爱。然而,市场上也充斥着大量的高仿Prada腋下包,这些仿制品在外观上与正品极为相似,但细节之处却往往暴露出其真实身份。为了帮助大家更好地辨别真伪,以下是一份高仿Prada腋下包真假鉴定的详细图解说明。首先,观察包

    2025年02月17日
    36
  • excel-计算员工提成时多区间多条件取值的问题?

    网上科普有关“excel:计算员工提成时多区间多条件取值的问题?”话题很是火热,小编也是针对excel:计算员工提成时多区间多条件取值的问题?寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。**第一格子位置粘贴以下公式:=IF(IF(B3=0,1,IF(B3&

    2025年03月02日
    328
  • 成什么成什么成语 成什么成什么成语有哪些

    网上科普有关“成什么成什么成语成什么成什么成语有哪些”话题很是火热,小编也是针对成什么成什么成语成什么成什么成语有哪些寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。1、成双成对(1)释义:配成一对,多指夫妻或情侣。(2)出处:《儿女英雄传》第

    2025年03月03日
    265
  • 地理中考复习资料(7到8年级)

    网上科普有关“地理中考复习资料(7到8年级)”话题很是火热,小编也是针对地理中考复习资料(7到8年级)寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。人教版初二上册地理复习课件第一章中国的疆域与人口§1.1中国的疆域伟大的祖国:中华人民共和国位于东、北半球,亚

    2025年03月03日
    329

发表回复

本站作者后才能评论

评论列表(4条)

  • 怀卉
    怀卉 2025年03月07日

    我是新盛号的签约作者“怀卉”!

  • 怀卉
    怀卉 2025年03月07日

    希望本篇文章《醇的化学性质》能对你有所帮助!

  • 怀卉
    怀卉 2025年03月07日

    本站[新盛号]内容主要涵盖:国足,欧洲杯,世界杯,篮球,欧冠,亚冠,英超,足球,综合体育

  • 怀卉
    怀卉 2025年03月07日

    本文概览:网上科普有关“醇的化学性质”话题很是火热,小编也是针对醇的化学性质寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。一、醇羟基中氢的反应...

    联系我们

    邮件:新盛号@sina.com

    工作时间:周一至周五,9:30-18:30,节假日休息

    关注我们