网上科普有关“我的第一本科普书 —— 《从一到无穷大》读书笔记”话题很是火热,小编也是针对我的第一本科普书 —— 《从一到无穷大》读书笔记寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。
[格式]
原文摘录
① 比较例子
事实上,在无穷数的世界里, 部分可能等于整体 !
② 比较方法
这就是康托尔提出的比较两个“无穷数”的方法:我们可以对两组无穷数进行配对,每个集合里的一个元素分别对应另一个集合里的一个元素, 如果最后它们正好一一对应,任何一个集合都没有多余的元素 ,那么这两个数的大小相等;
“无穷数学”的奠基者格奥尔格·康托尔提出,我们可以用希伯来字母 ? ( aleph)来描述无穷大的数字,字母右下方的角标代表该数字在无穷数列中的位置。
时至今日,理论数学几乎所有分支都已经成为科学家解释物理世界的工具,其中包括那些曾经被人们认为纯粹得没有任何实用价值的理论,例如群论、非交换代数和非欧几何。不过,哪怕是在今天,数学领域内仍有一套庞大的体系一直坚守着“ 无用 ”的高贵地位,它唯一的作用就是帮助人们锻炼智力,这样的超然绝对配得上“纯粹之王”的桂冠。这套体系就是所谓的“ 数论 ”( 这里的“数”指的是整数 ),它是最 古老 、最 复杂 的理论数学思想之一。奇怪的是,尽管数论的确是最纯粹的数学,但从某个角度来说,它又是一门基于经验甚至实验的科学。
事实上,数论的绝大多数命题来自实践——人们尝试用数字去做各种事情,然后得到一些结果,由此形成理论。这样的过程和物理学别无二致,只不过物理学家尝试的对象是现实中的物体而非理论化的数字。数论和物理学还有一个相似之处: 它们的某些命题得到了“数学上”的证明,但另一些命题仍停留在经验主义的阶段 ,等待着最杰出的数学家去证明。
① 哥德巴赫猜想
所以我们直到现在都没能列出一个只能算出质数的通用公式。数论中还有一个既没被证明也没被证伪的有趣问题,人称“哥德巴赫猜想”( Goldbach conjecture)。这个猜想是在 1742 年提出的,它宣称 任何一个偶数都能表示为两个质数之和 。[
② 质数平均分布定理
质数平均分布的定理是整个数学领域最重要的发现之一,它可以简单地表达为:在 1 到大于 1 的任意自然数 N 的区间内,质数所占的百分比约等于 N 的自然对数的倒数。 N 越大,这个式子得出的结果就越精确。
③ 费马大定理
费马在页边写了一条简短的笔记,他提出,方程 x2 + y2 = z2 有无穷多组整数解,但对于 xn + yn = zn 这样的方程[ 22],如果 n 大于 2,那么该方程无解。
拉证明了方程 x3 + y3 = z3 和 x4 + y4 = z4 不可能有整数解;狄利克雷( Dirichlet)又证明了 x5 + y5 = z5 没有整数解,再加上其他几位数学家的努力,目前我们已经确认,只要 n 小于 269,这个方程都没有整数解。
④ 虚数
人们从卡尔达诺使用的修饰词中挑了一个来给这样的数命名,所以现在它被称为“ 虚数 ”( imaginary numbers)。自从虚数诞生以后,数学家开始越来越频繁地使用这个概念。
对于这样的数,也许我们只能说,它们不是零,但并不比零大,也不比零小,所以它们完全是虚构出来的数,或者说 不可能的数 。
以此类推,每个实数都有一个对应的虚数。你还能将实数和虚数结合到一个式子里,写成(略)这样的形式。卡尔达诺发明的这种混合表达式通常被称为 复数 。
直到两位业余数学家赋予了它简单的 几何意义 ,虚数才算得以正名。
我们习以为常的三维空间竟能和时间结合起来,形成一个 符合四维几何学的统一坐标系 。
略
① 介绍
没有对称平面 的物品可以归为两类—— 左手性 的和 右手性 的。
其中一种蜗牛壳上的螺纹是顺时针的,另一种则是逆时针的。就连构成所有物质的基本微粒(即所谓的“分子”)也常常有左旋和右旋两种不同的形式,比如说,糖就有左旋和右旋两种,不管你信不信,以糖为食的细菌也分为两种,每种细菌都只能吃对应手性的糖。
② 两者怎么转换
但是,如果你让一头驴离开平面,在空间中将它翻转 180 度,然后让它重新回到平面上,那么它会变得和另一头驴完全一样。以此类推,我们可以说,如果让右手套离开三维空间,在第四个维度中以某种合适的方式将它翻转,再让它重新回到我们的空间里,那么它也可以变成左手套。
而是所谓的“ 莫比乌斯面 ”。这种面的名字来自一百多年前首次研究它的一位德国数学家。制作莫比乌斯面非常简单:取一根长纸条,将它盘成一个环;再将纸条一端扭转 180 度,最后把两端粘起来。看看图 23,你就知道该怎么做了。莫比乌斯面有许多奇异的特性,其中一点很容易发现:取一把剪刀,沿着平行于莫比乌斯面边缘的方向完整地剪一圈(如图 23 箭头所示)。当然,按照你的预想,最终我们应该得到两个独立的环。但真正去做以后,你却会发现自己想错了:我们剪出来的不是两个环,而是一个大环,它的长度是原来那个环的两倍,但宽度只有原来的 1/2!
影子驴在莫比乌斯面上行走时会发生什么。这头驴子发现自己陷入了窘境,它不知为何变得四脚朝天了!当然,它可以翻个面,让自己重新站稳,但要是这样的话,它就变成了一头右侧驴。简而言之, 我们的“左侧”驴在莫比乌斯面上走一圈以后就变成了“右侧”驴。
在一个扭曲的面上,右手性物体只需通过扭曲处就能转换成左手性物体,反之亦然。莫比乌斯环实际代表着另一个更具普遍性的面的一部分,即 克莱因瓶 。
但只要再想想,你会发现第四维其实并不神秘。事实上,有一个词我们大部分人每天都会用到,它可以被视为,或者说实际上就是物理世界中的 第四个维度,这个词就是“时间” 。
用四维时空几何学的术语来说,代表每个独立的物质粒子的生命史的线被称为“世界线”。同样地,组成复合物体的一束世界线被称为“世界带”。
因此,如果能找到一种公认的标准速度,我们就能 用长度单位来描述时间跨度 。
通过“ 光年 ”这个术语,我们将时间化作了一个实用的维度,时间单位也因此成为一个可用于度量空间的单位。反过来说,我们也可以创造另一个术语“ 光英里 ”,用它来描述光行经 1 英里的距离所需的时间。利用上面介绍的光速值,我们可以算出 1 光英里等于 0. 0000054 秒 。
我们只需推广一下毕达哥拉斯定理,就能算出四维距离;要研究事件之间的物理关系, 四维距离 是一个比独立的空间间隔和时间间隔更基本的值。
空间和时间之间的差异就被彻底抹除了,这也意味着我们承认了空间可以转化为时间,反之亦然。
我们可以将 第四个坐标定义为一个纯虚数 。
既然我们认为空间距离永远是实数,而时间距离永远是纯虚数,那么或许可以说,实数的四维距离与普通空间距离的关系更为密切,而虚数四维距离与时间间隔的联系更紧密。用闵可夫斯基的术语来说,第一种四维距离叫作“类空距离”( spatial),第二种则是“类时距离”( temporal)。
类空距离可以转化为普通的空间距离,而类时距离可以转化为普通的时间间隔。但是, 这两种距离一个是实数,一个是虚数,二者之间有一道不可逾越的藩篱,所以它们无法互相转化,正是出于这个原因,我们不能将尺子变成时钟,反过来也不行 。
略
相同:
此为 卢瑟福模型 。
不同:
根据已有的物理学知识,如果原子内部的结构真的和行星系一样,那么它只能维持亿万分之一秒的时间,换句话说,这样的原子旋生旋灭,根本无法长期存在。但是尽管我们从理论上推出了如此悲观的前景,但现实却告诉我们,原子结构非常稳定, 原子内部的电子高高兴兴、不知疲倦地绕着中央的原子核绕圈,绝不损失任何能量,更没有坠落的迹象 !
电子并不是围绕原子核旋转的,卢瑟福模型不正确。
① 核子 与 电子
尽管已知的物质千姿百态,种类多不胜数,但追根溯源,它们其实都是两种基本粒子的不同组合:1.核子,物质的基本粒子,它可能是电中性的( 中子 ),也可能携带一个正电荷( 质子 );2. 电子 ,自由负电荷。
其实自然界中的确存在正电子,它和带负电的普通电子十分相似,只是电性相反。带负电的质子也可能存在,只是目前物理学家还没有探测到这种粒子。在我们的物理世界里, 正电子 和 负质子 (如果存在的话)之所以不像负电子和正质子那么常见,是因为这两组粒子互相“拮抗”。大家都知道,如果两个电荷的电性相反,那么它们一旦发生接触就会互相抵消。因此,既然正电子和负电子分别代表正负自由电荷,那么在同一片空间区域中,二者必然无法共存。这样的 湮灭 会在二者相遇的位置产生强烈的电磁辐射(γ 射线),而两个电性相反的电子“湮灭”的过程与强伽马射线看似凭空“创造”一对电子的过程互为镜像。
据我们所知,宇宙中可能存在由反物质构成的行星系,如果将一块来自太阳系的普通石头扔进反星系,或者反之,那么这块石头一落地就会变成原子弹。
② 中微子
中微子的存在是用数学中的“归谬法”反推出来的。这个激动人心的成就并非始于人们发现了什么东西,而是我们发现某些物理过程中少了一些东西。这些“少了的东西”就是能量。
人们一度相信,这是能量守恒定律失效的第一个实验证据,但泡利(Pauli)提出,这种窃取核能量的“巴格达大盗”可能是一种名叫中微子的假想粒子, 它不携带电荷,质量小于普通电子 。
现有的任何物理装置都无法探测到这种不带电的轻粒子, 它能够轻而易举地穿透任何物质 。要阻挡可见光,一层薄薄的金属膜足以胜任;对于穿透力更强的 X 射线和 γ 射线来说,几英寸厚的铅能够显著降低它们的强度;但中微子束却能轻松穿过几光年厚的铅层!难怪我们无论如何都观察不到中微子。
③ 总结 - 粒子之间的转换
中微子能与电子结合,形成我们在宇宙射线中观察到的不稳定的介子,它还有一个不太恰当的名字,“重电子”:
④ 更多
略
略
① 温度与热运动
布朗运动 实际上是物质看不见的热运动造成的结果,而我们通常所说的 温度其实不过是度量分子 热运动 剧烈程度的一种标准。
当温度达到 ?273℃(即 ?459℉)时,即绝对零度,物质分子会完全停止热运动。
而如果温度继续升高,就连分子本身也岌岌可危,因为越来越剧烈的碰撞会将分子撕裂成原子。这种 热离解 过程取决于分子自身的强度。一些有机物分子在几百度的“低温”下就会分解成独立的原子或原子团,但另一些更稳定的分子(例如水)需要一千多度的高温才会溃散。但任何分子都无法在几千度的高温下存活,在这样的高温环境中,物质将变成 纯化学元素组成的气态混合物 。
如果温度升高到几十万甚至几百万度,这种热电离过程就会变得越来越明显。这样极端的高温超过了我们能在实验室里达到的上限,但在恒星尤其是太阳内部却很常见。就连原子也无法在这样的酷热环境中幸存,它的所有外层电子都会被剥夺,物质最终会变成 赤裸的原子核与自由电子组成的混合物 ,电子在空间中高速运动,以极其强大的力量 互相碰撞 。
要利用热彻底分解物质,将原子核拆成独立的核子(质子和中子),我们至少需要几十亿度的高温。虽然我们在最热的恒星内部也没有发现这么高的温度,但它很可能存在于几十亿年前的年轻宇宙中。
② 热运动 与 无序定律
热运动完全无规律的特性正好能用一种新定律来描述,我们称之为无序定律,或者 统计行为定律 。要理解这句拗口的描述,我们不妨看看著名的“ 醉鬼走路 ”问题。
这个式子意味着醉鬼随机转向无数次以后,他与灯柱之间最可能的距离等于他走过的每段直线路程的平均长度乘以线段数量的平方根。
但是如果有大量醉鬼从同一根灯柱的位置出发作随机运动,而且他们互不干扰,那么你会发现,经过足够长的一段时间以后,所有醉鬼将分布在灯柱周围一定的区域内,我们可以利用刚才介绍的方法算出他们与灯柱之间的平均距离。
① 介绍
物理系统中任何自发的过程必然朝着熵增的方向发展,直至最后达到熵最大的平衡态。这就是著名的熵增定律,又叫 热力学第二定律 (第一定律是能量守恒定律),熵增定律又叫 无序度增加定律 。
② 误区
1、生命体的存在似乎完全违反了熵增定律。
植物利用来自阳光的负熵(秩序),以无机化合物为原料构建自己的身体;而动物只能吃掉植物(或者其他动物),靠这种方式来 获得负熵 。
2、
但普通的蒸汽发动机为什么就能将热转化为运动,同时并 不违背熵增定律呢 ?奥秘在于蒸汽发动机利用的只是燃料燃烧产生的一部分能量,更多能量以废气的形式排了出去,或者被专门安装的冷却设备吸收了。在这种情况下,整个系统内的熵发生了两种相反的变化: 1. 部分热量转化为活塞的机械能,这是一个熵减的过程; 2. 锅炉的另一部分热量流入冷却设备,这是一个熵增的过程。 熵增定律要求的只是系统的总熵增加,只要后面这部分增加的熵超过前面那部分减少的熵就行 。
3、
另一个例子可以帮助我们更好地理解熵增定律。假设有个 5 磅重的砝码放在离地 6 英尺的架子上。根据能量守恒原理,这个砝码不可能在没有外力作用的情况下自己跑到天花板上。从另一方面来说,它却有可能将自己的部分重量掷向地板,由此获得能量,让剩余的部分飞上去。同样地, 我们可以允许系统内的局部区域出现熵减,只要其余部分增加的熵足以补偿差 额。换句话说, 我们的确能让系统内部分区域的分子无序运动变得更有序,只要我们不在乎这样的操作会让其他区域的分子运动变得更无序。
① 介绍
微观尺度下空气分子的分布其实并不均匀。如果放大足够的倍数,你会看到 气体 内的分子不断聚成小团,然后很快散开,但其他位置又会出现类似的分子团。这种效应叫作密度涨落。普通 液体 也有密度和压力的涨落效应,只是看起来不那么明显;
② 案例 1 - 为什么天空是蓝的
天空是蓝色的,原因的一部分就是,大气散射一部分来自悬浮的尘埃,大部分则是密度涨落引起的分子散射。
照理说纯净的天空是极均匀的,分子再多也没有“天蓝”。就像一块极平的镜子,只有折射或反射,而极少散射。在均匀一致的环境中,不同分子的散射相互抵消了。但正因为密度涨落效应,导致“空气中有不可消除的‘杂质’,即空气自身的涨落。密度涨落等对阳光的散射,形成了蓝天。
③ 案例 2 - 为什么水烧开会呈乳白色
所以我们可以换一种方式来描述布朗运动:水中的悬浮微粒之所以会被推来挤去,是因为它在不同方向上受到的压力总在快速变化。当液体被加热到临近沸点时,密度涨落变得更加明显,让液体看起来略带乳白色。
生命虽然复杂,但从本质上说,它和普通的物理现象和化学现象并无区别,所以我们很难在生命和非生命之间划出明确的界线。
从周围的介质中撷取原材料,生成类似自身的结构单元。这些病毒微粒既是普通的化学分子,又是生命体,所以它们正是生命和非生命物质之间“缺失的一环”。
基因的确是最小的生物单元(每个独立基因大约由 100 万个原子组成)。 基因似乎是生命和非生命之间缺失的一环 。
① 遗传特征
色盲这一类的遗传特征需要两条染色体都受到影响才会表现出明显的性状,因此我们称之为“ 隐性遗传 特征”。
“ 显性遗传 ”和隐性遗传正好相反,这类遗传特征 只需要一条染色体受到影响就会表现出来 。
除了显性遗传和隐性遗传以外,还有一种“ 中性 ”遗传特征。
当然,就算是在最先进的显微镜下,所有基因看起来还是差不多,它们不同的功能深深隐藏在分子结构内部。
② 其他
但在分裂开始之前,成对的染色体常常纠缠在一起,所以它们有可能产生部分的交换。这样的交叉混合(如图 99a、b 所示)会导致来自父母双方的基因序列发生混淆,从而产生混合的遗传性状。
彼此独立、互不影响的性状在染色体上的位置必然隔得很远。
如果只用一只眼,你很难判断针鼻与线头之间的距离;但要是两只眼睛都睁开,你很容易将线头穿过针鼻,或者至少很容易学会。用两只眼睛观察物体的时候,你会不自觉地让两只眼睛同时聚焦在一件物体上。
你可以试试先闭上一只眼,然后换一只眼,你会发现,物体(在这个例子里就是针)相对于远处背景的位置(比如说房间对面的窗户)发生了变化。这种效应就是 视差位移 .
越远的物体视差位移越小,所以我们可以利用这一点来判断距离 。
1、我们不必真的制造一台能将你的双眼拉开这么远的装置,比如说左眼在华盛顿,右眼在纽约,只需要同时从这两座城市拍摄星空背景上的月亮就行。把这两张照片放到立体镜里。
2、利用地球本身的尺寸测量地球公转轨道的大小
3、利用公转轨道的尺寸来测量恒星的距离(当然,这意味着我们需要等待半年才能完成两次观察,但这又有何不可呢?)
如果更远怎么办呢?
1、基于脉动恒星的测距法
哈佛大学的天文学家哈洛·沙普利(Harlow Shapley)找到了一把能够 测量遥远恒星距离 的新“尺子”,它就是所谓的 脉动恒星 ,或者说造父变星。
如果你发现了一颗距离超过视差位移法测量上限的造父变星,那么你只需要通过望远镜观察,记下它的脉动周期,进而算出它的实际亮度;再比较一下你观察到的亮度和它的实际亮度,你马上就能知道它离你有多远。利用这种巧妙的办法,沙普利成功地测量了银河系内那些非常遥远的距离;估算银河系大体尺寸的时候,这种方法也特别有用。
2、其他
到了这个阶段,我们只能根据星系的可见尺寸来判断它的距离;按照此前的经验,同一类型的所有星系大小都差不多,这一点和恒星很不一样。如果你知道世界上所有人的身高完全相同,既没有高个子也没有小矮人,那么你就能通过自己看到的某人的身高判断他和你之间的距离。
这颗星球的主体至今仍处于熔化状态,我们常常在不经意间提起的“坚固大地”不过是漂浮在熔岩之上的相对较薄的一层硬壳。要证明这件事,最简单的办法莫过于测量地球内部不同深度的温度;于是我们发现, 深度每增加一千米,温度就会上升 30℃ 左右。
在全世界最深的矿井里(南非金矿罗宾逊深井),井壁灼热滚烫,为了避免矿工们被活活烤熟,矿场不得不加装空调 。
实际上,刚刚诞生的地球是一个纯液态的球体,从那以后,它一直在缓慢冷却,现在的我们看到的不过是这颗星球生命历程中的一个特定阶段,而在遥远的未来, 地球终有一天会完全固化 。
请大家帮我提供3~5个关于数学的小故事
要写出好的科普文章,选题是最重要的,而选题的要领如下:
1、首先要想清楚自己想要讨论的主题,最好是你自己就有兴趣的。主题非常重要,你选的主题可能决定了你这篇文章的受众到底大不大。
2、寻找主题相关的资料。如果你本身对主题就有了解,可以根据你对主题的了解,去找相关方向文章资料(精准资料)。如果你对主题本身不了解,那就需要多找一些在主题方向相关资料(泛资料)。
3、根据资料理清大体要写的内容。这个步骤其实是整个写文章过程最考验一个人基本科学素养的步骤,必需要可以认清资料里面内容的关系。最好有一个本地的文档,保存你看完这些资料后的一些想法,最后把想法整理起来,这些想法就是你要写这篇文章的整体思路了。
4、最好再写一些自己的想法,可以整理到一些你的观点和其他人观点不一样的东西。这些你自己观点和其他人观点不一样的地方往往就是一个科普文章的精髓。
5、将整理好的资料与把你的想法连在一起,组织成一篇文章。
写科普文章要注意的问题:
1、要选准对象。
下笔时时刻想着大多数读者只有一般的文化水平,他们不是本行专家.写科普文章不是写论文,也不是写教材,而是把最新科技成果介绍给尽可能多的读者阅读。
2、要主题突出。
一篇科普文章,最好只有一个主题,文章应紧紧围绕这个主题展开.在展开之前,要列出展开提纲.科普文章概念准确很重要,基本原理、基本概念不能出错.科普文章要有科学研究的新成果、新概念、新知识、新说法.这就叫做“与时俱进”,现代科普文章应把普及新的科学知识为己任.科普文章应有深度,对新概念、新知识的叙述不能仅停留在表面上,要适当向一定的深度展开.文章能吸引读者,要使用生动活泼的比喻,幽默诙谐的语言。
3、要定位准确。
科普文章不是掌握本门技术的入门书,而是了解本门技术的通俗读物.打个比方,同样是参观人民大会堂,作为提高建筑系新生的感性认识的教学安排,由老师讲解,和一般参观者由导游**讲解,无论是介绍的内容还是使用的语言,肯定大不一样。
4、要取材适当。
作为介绍科学技术的科普文章,当然必须保证概念的正确.但是介绍工作原理时宜粗不宜细,切忌用过多的技术术语,更不能用数学公式来表达;而应该多用物理概念使事物形象化.着重说明所要介绍技术的特点、意义、用途,以及对科学发展、经济发展、社会发展、个人生活所起的影响。
5、要语言简练、通俗易懂。
能用简单的句子讲清楚的就不用复杂的句子,能用字数少的词汇说清楚的就不用字数多的词汇.文章层次要清楚,逻辑性强,前后呼应,避免重复.科普文章是面向广大群众的,要把群众听不懂的“行话”变为群众易懂的“大众话”,用恰当的语言形象化。
6、要避免抄袭的嫌疑。
论证可以接近,但不能雷同或是抄袭.不同作者可以有相同的看法或主张,可以有同一论点.不同作者在表达同一论点时采用的论证过程不能雷同,因为论证的方法也与作者个人写作习惯、写作技巧及其它综合知识相关.综上所述,要写出好的科普文章,要具备广博的知识、睿智的眼光、流畅的文笔以及吃苦耐劳的精神。
以上内容参考:百度百科-科学普及
以上内容参考:百度百科-写作
数学手抄报可以写什么
1、蝴蝶效应
气象学家Lorenz提出一篇论文,名叫「一只蝴蝶拍一下翅膀会不会在Taxas州引起龙卷风?」论述某系统如果初期条件差一点点,结果会很不稳定,他把这种现象戏称做「蝴蝶效应」。就像我们投掷骰子两次,无论我们如何刻意去投掷,两次的物理现象和投出的点数也不一定是相同的。Lorenz为何要写这篇论文呢?
这故事发生在1961年的某个冬天,他如往常一般在办公室操作气象电脑。平时,他只需要将温度、湿度、压力等气象数据输入,电脑就会依据三个内建的微分方程式,计算出下一刻可能的气象数据,因此模拟出气象变化图。
这一天,Lorenz想更进一步了解某段纪录的后续变化,他把某时刻的气象数据重新输入电脑,让电脑计算出更多的后续结果。当时,电脑处理数据资料的数度不快,在结果出来之前,足够他喝杯咖啡并和友人闲聊一阵。在一小时后,结果出来了,不过令他目瞪口呆。结果和原资讯两相比较,初期数据还差不多,越到后期,数据差异就越大了,就像是不同的两笔资讯。而问题并不出在电脑,问题是他输入的数据差了0.000127,而这些微的差异却造成天壤之别。所以长期的准确预测天气是不可能的。
参考资料:
2、动物中的数学“天才”
蜜蜂蜂房是严格的六角柱状体,它的一端是平整的六角形开口,另一端是封闭的六角菱锥形的底,由三个相同的菱形组成。组成底盘的菱形的钝角为109度28分,所有的锐角为70度32分,这样既坚固又省料。蜂房的巢壁厚0.073毫米,误差极小。
丹顶鹤总是成群结队迁飞,而且排成“人”字形。“人”字形的角度是110度。更精确地计算还表明“人”字形夹角的一半——即每边与鹤群前进方向的夹角为54度44分8秒!而金刚石结晶体的角度正好也是54度44分8秒!是巧合还是某种大自然的“默契”?
蜘蛛结的“八卦”形网,是既复杂又美丽的八角形几何图案,人们即使用直尺的圆规也很难画出像蜘蛛网那样匀称的图案。
冬天,猫睡觉时总是把身体抱成一个球形,这其间也有数学,因为球形使身体的表面积最小,从而散发的热量也最少。
真正的数学“天才”是珊瑚虫。珊瑚虫在自己的身上记下“日历”,它们每年在自己的体壁上“刻画”出365条斑纹,显然是一天“画”一条。奇怪的是,古生物学家发现3亿5千万年前的珊瑚虫每年“画”出400幅“水彩画”。天文学家告诉我们,当时地球一天仅21.9小时,一年不是365天,而是400天。(生活时报)
3、麦比乌斯带
每一张纸均有两个面和封闭曲线状的棱(edge),如果有一张纸它有一条棱而且只有一个面,使得一只蚂蚁能够不越过棱就可从纸上的任何一点到达其他任何一点,这有可能吗?事实上是可能的只要把一条纸带半扭转,再把两头贴上就行了。这是德国数学家麦比乌斯(M?bius.A.F 1790-1868)在1858年发现的,自此以后那种带就以他的名字命名,称为麦比乌斯带。有了这种玩具使得一支数学的分支拓朴学得以蓬勃发展。
4、数学家的遗嘱
阿拉伯数学家花拉子密的遗嘱,当时他的妻子正怀着他们的第一胎小孩。“如果我亲爱的妻子帮我生个儿子,我的儿子将继承三分之二的遗产,我的妻子将得三分之一;如果是生女的,我的妻子将继承三分之二 的遗产,我的女儿将得三分之一。”。
而不幸的是,在孩子出生前,这位数学家就去世了。之后,发生的事更困扰大家,他的妻子帮他生了一对龙凤胎,而问题就发生在他的遗嘱内容。
如何遵照数学家的遗嘱,将遗产分给他的妻子、儿子、女儿呢?
5、火柴游戏
一个最普通的火柴游戏就是两人一起玩,先置若干支火柴於桌上,两人轮流取,每次所取的数目可先作一些限制,规定取走最后一根火柴者获胜。
规则一:若限制每次所取的火柴数目最少一根,最多三根,则如何玩才可致胜?
例如:桌面上有n=15根火柴,甲、乙两人轮流取,甲先取,则甲应如何取才能致胜?
为了要取得最后一根,甲必须最后留下零根火柴给乙,故在最后一步之前的轮取中,甲不能留下1根或2根或3根,否则乙就可以全部取走而获胜。如果留下4根,则乙不能全取,则不管乙取几根(1或2或3),甲必能取得所有剩下的火柴而赢了游戏。同理,若桌上留有8根火柴让乙去取,则无论乙如何取,甲都可使这一次轮取后留下4根火柴,最后也一定是甲获胜。由上之分析可知,甲只要使得桌面上的火柴数为4、8、12、16...等让乙去取,则甲必稳操胜券。因此若原先桌面上的火柴数为15,则甲应取3根。(∵15-3=12)若原先桌面上的火柴数为18呢?则甲应先取2根(∵18-2=16)。
规则二:限制每次所取的火柴数目为1至4根,则又如何致胜?
原则:若甲先取,则甲每次取时,须留5的倍数的火柴给乙去取。
通则:有n支火柴,每次可取1至k支,则甲每次取后所留的火柴数目必须为k+1之倍数。
规则三:限制每次所取的火柴数目不是连续的数,而是一些不连续的数,如1、3、7,则又该如何玩法?
分析:1、3、7均为奇数,由於目标为0,而0为偶数,所以先取者甲,须使桌上的火柴数为偶数,因为乙在偶数的火柴数中,不可能再取去1、3、7根火柴后获得0,但假使如此也不能保证甲必赢,因为甲对於火柴数的奇或偶,也是无法依照己意来控制的。因为〔偶-奇=奇,奇-奇=偶〕,所以每次取后,桌上的火柴数奇偶相反。若开始时是奇数,如17,甲先取,则不论甲取多少(1或3或7),剩下的便是偶数,乙随后又把偶数变成奇数,甲又把奇数回覆到偶数,最后甲是注定为赢家;反之,若开始时为偶数,则甲注定会输。
通则:开局是奇数,先取者必胜;反之,若开局为偶数,则先取者会输。
规则四:限制每次所取的火柴数是1或4(一个奇数,一个偶数)。
分析:如前规则二,若甲先取,则甲每次取时留5的倍数的火柴给乙去取,则甲必胜。此外,若甲留给乙取的火柴数为5之倍数加2时,甲也可赢得游戏,因为玩的时候可以控制每轮所取的火柴数为5(若乙取1,甲则取4;若乙取4,则甲取1),最后剩下2根,那时乙只能取1,甲便可取得最后一根而获胜。
通则:若甲先取,则甲每次取时所留火柴数为5之倍数或5的倍数加2。 6、韩信点兵
韩信点兵又称为中国剩余定理,相传汉高祖刘邦问大将军韩信统御兵士多少,韩信答说,每3人一列余1人、5人一列余2人、7人一列余4人、13人一列余6人……。刘邦茫然而不知其数。
我们先考虑下列的问题:假设兵不满一万,每5人一列、9人一列、13人一列、17人一列都剩3人,则兵有多少?
首先我们先求5、9、13、17之最小公倍数9945(注:因为5、9、13、17为两两互质的整数,故其最小公倍数为这些数的积),然后再加3,得9948(人)。
中国有一本数学古书「孙子算经」也有类似的问题:「今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?」
答曰:「二十三」
术曰:「三三数之剩二,置一百四十,五五数之剩三,置六十三,七七数之剩二,置三十,并之,得二百三十三,以二百一十减之,即得。凡三三数之剩一,则置七十,五五数之剩一,则置二十一,七七数之剩一,则置十五,即得。」
孙子算经的作者及确实着作年代均不可考,不过根据考证,着作年代不会在晋朝之后,以这个考证来说上面这种问题的解法,中国人发现得比西方早,所以这个问题的推广及其解法,被称为中国剩余定理。中国剩余定理(Chinese Remainder Theorem)在近代抽象代数学中占有一席非常重要的地位。
古今数学名题 阿溪里斯能追上乌龟吗
阿溪里斯是古希腊传说中善走的神,现在让他和乌龟赛跑。假定他的速度为乌龟的10倍。乌龟先出发,走了1/10公里。阿溪里斯开始追赶它,当阿溪里斯走完这1/10公里时,乌龟又向前走了1/100公里;阿溪里斯再走完这1/100公里时,乌龟又向前走了1/1000公里;……。阿溪里斯的速度再快,走过一段路总得花一段时间,乌龟速度再慢,在这一段时间里也总要再向前走一段路程。这样说来,阿溪里斯是永远追不上乌龟了。
古今数学名题 绳子问题
如果有二条绳子,任一条皆可从头烧到尾且耗时一小时(绳子为非均质材质),请想出以这二条绳子及一打火机计算出四十五分钟是多长?
高 斯
高斯(Gauss 1777~1855)生於Brunswick,位於现在德国中北部。他的祖父是农民,父亲是泥水匠,母亲是一个石匠的女儿,有一个很聪明的弟弟,高斯这位舅舅,对小高斯很照顾,偶而会给他一些指导,而父亲可以说是一名「大老粗」,认为只有力气能挣钱,学问这种劳什子对穷人是没有用的。
高斯很早就展现过人才华,三岁时就能指出父亲帐册上的错误。七岁时进了小学,在破旧的教室里上课,老师对学生并不好,常认为自己在穷乡僻壤教书是怀才不遇。高斯十岁时,老师考了那道著名的「从一加到一百」,终於发现了高斯的才华,他知道自己的能力不足以教高斯,就从汉堡买了一本较深的数学书给高斯读。同时,高斯和大他差不多十岁的助教Bartels变得很熟,而Bartels的能力也比老师高得多,后来成为大学教授,他教了高斯更多更深的数学。
老师和助教去拜访高斯的父亲,要他让高斯接受更高的教育,但高斯的父亲认为儿子应该像他一样,作个泥水匠,而且也没有钱让高斯继续读书,最后的结论是--去找有钱有势的人当高斯的赞助人,虽然他们不知道要到哪里找。经过这次的访问,高斯免除了每天晚上织布的工作,每天和Bartels讨论数学,但不久之后,Bartels也没有什麽东西可以教高斯了。
美国的着名数学家贝尔(E.T.Bell),在他着的《数学工作者》(Men of Mathematics) 一书里曾经这样批评高斯:在高斯死后,人们才知道他早就预见一些十九世的数学,而且在1800年之前已经期待它们的出现。如果他能把他所知道的一些东西泄漏,很可能现在数学早比目前还要先进半个世纪或更多的时间。阿贝尔(Abel)和雅可比(Jacobi)可以从高斯所停留的地方开始工作,而不是把他们最好的努力花在发现高斯早在他们出生时就知道的东西。而那些非欧几何学的创造者,可以把他们的天才用到其他力面去。
数学手抄报可以写数学历史、数学概念解析、数学定理和公式、数学问题和解决方法、数学在现实生活中的应用、数学趣味知识、数学图形绘制。
一、数学历史
介绍数学的发展历程、著名数学家以及他们的贡献。
二、数学概念解析
介绍数学中的基本概念,代数、几何、概率等,并解释其含义和应用。
三、数学定理和公式
介绍重要的数学定理和公式,勾股定理、贝叶斯定理等,并附上证明或应用示例。
四、数学问题和解决方法
介绍一些有趣的数学问题,包括逻辑推理、数列、排列组合等,并提供解决思路和方法。
五、数学在现实生活中的应用
探讨数学在科学、工程、经济等领域中的实际应用,数据分析、密码学、金融模型等。
六、数学趣味知识
分享一些有趣的数学事实、谜题或趣味算法,以增加读者对数学的兴趣和好奇心。
七、数学图形绘制
使用几何图形和坐标系绘制各种图形,如三角形、正方体、函数图像等,以展示数学中的美学。
手抄报的起源与运用
一、手抄报的起源
手抄报起源于中国的学校教育领域,是一种学生自主制作的小型宣传资料,以纸张、插图和文字等形式呈现。它是一种丰富多样的学习工具,旨在激发学生对知识的兴趣和创造力。
手抄报最早出现于20世纪初,当时由于印刷技术的限制,学校无法提供大量印刷教材。为了满足学生获取信息和展示作品的需求,手写或手绘的方式被采用,逐渐演变成手抄报。
最初,手抄报以字写字、插图粘贴的方式制作,后来随着复印机、打印机等技术的普及,手抄报的制作方式也得到了改进。
二、手抄报的运用
1、教育教学:学生可以制作手抄报来总结知识、梳理思路、分享观点,并在课堂上展示和交流。
2、主题活动:用于学校各类主题活动、科普宣传、文化节庆等,激发学生的参与积极性。
3、信息传播:用于宣传某一事件、社会问题或科学知识,通过展示和张贴在公共场所来传播信息。
4、学生自我展示:学生可以制作个人手抄报来展示自己的兴趣爱好、成就或特长。
关于“我的第一本科普书 —— 《从一到无穷大》读书笔记”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!
本文来自作者[语蓉]投稿,不代表新盛号立场,如若转载,请注明出处:https://liuxinsheng.com/cshi/202502-8839.html
评论列表(4条)
我是新盛号的签约作者“语蓉”!
希望本篇文章《我的第一本科普书 —— 《从一到无穷大》读书笔记》能对你有所帮助!
本站[新盛号]内容主要涵盖:国足,欧洲杯,世界杯,篮球,欧冠,亚冠,英超,足球,综合体育
本文概览:网上科普有关“我的第一本科普书 —— 《从一到无穷大》读书笔记”话题很是火热,小编也是针对我的第一本科普书 —— 《从一到无穷大》读书笔记寻找了一些与之相关的一些信息进行分析,...